close all; clear all; clc; % VARIABLES vars = 2; samples = 20; nComponents = 2; % 1) Normalize data data=rand(vars,samples); % 2) Remove mean MeanMatrix = repmat(mean(data,2),1,size(data,2)); data=data-MeanMatrix; % 3) Calculate covariance matrix CovMatrix = cov(data'); % 3) Calculate eigenvectors and eigenvalues of the covariance matrix [FeatureMatrix, EvalueMatrix] = eig(CovMatrix); Evalues = diag(EvalueMatrix) % 4) Order by eigenvalue Evalues = Evalues(end:-1:1) FeatureMatrix = FeatureMatrix(:,end:-1:1); FeatureMatrix=FeatureMatrix'; % 5) Take first n E-vectors FeatureMatrix = FeatureMatrix(1:nComponents,:); % 6) Project data ProjectedData = FeatureMatrix * data; % 7) Reconstruction ReconstructedData = (FeatureMatrix' * ProjectedData) + MeanMatrix; % plot subplot(2,2,1); plot(data(1,:),data(2,:),'.'); subplot(2,2,2); plot(ProjectedData(1,:),ProjectedData(2,:),'.'); subplot(2,2,3); plot(ReconstructedData(1,:),ReconstructedData(2,:),'.');